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In this paper we study weighted function spaces of type B, (R”. w(x}) and
F, AR" w(x)) where w{x) is a weight function of at most polynomial growth,
preferably w(x)={(1+ Ix]7)%? with « € R. The main result deals with estimates for
the approximation numbers of compact embeddings between spaces of this type.
Furthermore we are concerned with the dependence of the approximation numbers
a, of compact embeddings between function spaces B, (€2) and F, (£2) on an

underlying domain 2. " 1995 Academic Press, Inc.

a2

I. INTRODUCTION

In [4] and [ 5] entropy and approximation numbers of compact embed-
dings between function spaces of type B,  and F, . seR, 0<p<oc (with
p<oo in the F-case), 0 <g< o, on a bounded domain 2 in R" were
thoroughly investigated. Recall that these two scales of spaces cover many
well-known classical spaces such as (fractional) Sobolev spaces, Hélder—
Zygmund spaces, Besov spaces and (inhomogeneous) Hardy spaces. In [ 7]
we extended these results in some sense, i.e. we studied weighted function
spaces of type B, (R", w(x)) and F; (R", w(x)) where w(x) is an
admissible weight function of at most polynomial growth, that is a smooth
function with

0 < w(x) < ew(y)d x —pd= (D

for some a=0, some ¢>0 and all xeR", yeR" As usual {(x)>=
(1 + [x[*)"% The main result of [ 7] dealt with relatively sharp estimates for
104
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WEIGHTED FUNCTION SPACES 105

the entropy numbers of compact embeddings between function spaces of
such type
F;‘l_‘“(R". wi{x)x)F) mto F* (R" w(x)) with f>0 (2)

P g

and their B-counterparts.

We applied these results in [8] to eigenvalue distributions of pseudo-
differential operators. In the present paper we return to the study of the
compactness of embeddings of type (2} for its own sake estimating the
related approximation numbers.

Weighted spaces of the above and more general type have already been
treated before, especially by H.-J. Schmeisser and H. Triebel in [12:5.1].
Nevertheless we sketched new shorter proofs for some relevant facts in [7]
relying not very much on former results.

The plan of the paper is as follows. In Sect. 2 we introduce the spaces
B, (R", w(x)) and F, (R w(x)). We collect some recently proved results
which will be of great service for us later on. In particular, we remind the
reader of the equivalence of the quasi-norms

If1F (R wlx)] and  fiwf | F3 (R (3)

and their B-counterparts. Furthermore recall that for —oo <, <5, < oc,
O<p, €pr<x, 0<g,<oc and 0 < ¢, < o0, the embedding

F (R, wi(x)) nto F‘,‘, (R, wy{x)) (4)

P4 42

(and its B-counterpart) is compact if and only if

n n WwH{x)

P P> wy(x)

— 0 as |x|— oc. (5)

Finally we mention a helpful weak type embedding

B, (R, {x}%) into  weak-B,, (R") (6)
where a>0 and 1/p,=1/p +a/n.

Turning to the entropy and approximation numbers we refer to the
respective estimates related to function spaces on domains published in [4]
and [5]. In Sect.3 we regard as a preparation the dependence of the
approximation numbers on the certain domain £2 on which function spaces
F, (£2) and B; () are defined. Afterwards we state our main theorem.
Sect. 4 contains all the proofs.

Unimportant constants are denoted by ¢, occasionally with additional
subscript within the same formula or the same step of the proof. Further-
more, (k.{/m) refers to formula (m) in subsection k./, whereas (j) means
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formula (/) in the same subsection. In a similar way we quote definitions,
propositions and theorems.

2. DEFINITIONS AND PRELIMINARIES

2.1. Weighted Function Spaces

Let R" be the Euclidean n-space. We introduce the notation {(x) =
(I+]x*)"? on R™.

DerINITION 1. The class of admissible weight functions is the collection

of all positive C™ functions w(x) on R” with the following properties:

(1) for any multiindex y there exists a positive constant ¢, with
[D*w(x)] €c.wlx) forall xeR”, (1)
(i1) there exist two constants ¢ >0 and x> 0 such that
O<w{x)<ew(p){x—y>* forall yeR” and yeR™ (2)

Remark 1. From (2) it can be easily seen that for suitable constants
¢; >0 and ¢, >0 it holds

ew(y)<w(x)<e,w(y) for all xeR”, yeR” with |x—y|<1. (3)

On the other hand we have for admissible weight functions w,(x) and
wy(x) that both w (x) ws(x) and w, '(x) are admissible weight functions,
too.

Remark 2. We want to explain briefly that the apparently restrictive
assumption for w(x) to be a C* function is in fact almost none. Let w(x)
be a measurable function in R" satisfying (2} and assume /4(x)>0 to be a
C*-function in R”, supported by the unit ball with, say, jh(x) dc=1 1In
other words, A(x) is a so-called mollifier. Then (4 * w)(x) defined by

(h*w)x)= J hx—yyw(y)dy 4)

is an admissible weight function according to the above definition. As w
and h = w are equivalent to each other this finally justifies to concentrate
only on smooth representatives without loss of generality.

Now we will briefly remind the reader of the well-known spaces B, , and
F; , because we want to define their weighted counterparts afterwards. All
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spaces in this paper are defined on R" and so we omit “R"” in the sequel.
The Schwartz space S and its dual S’ of all complex-valued tempered dis-
tributions have the usual meaning here. Furthermore, L, with 0 <p < oc, is
the usual quasi-Banach space with respect to the Lebesgue measure, quasi-
normed by |- | L]l

Let ¢ € S be such that

supppc{yeR": |y <2} and p(x)=1 if |x| <1, (5)

let (pJ(\)— (27x)—@(2/*'x) for jeN and put ¢,=¢. Then since
1=%7,¢;(x) for all xeR", the {p,} form a dyadic resolution of unity.
Cuven any feS', we denote by f and f¥ its Fourier transform and its
inverse Fourier transform, respectively. Thus ((p},f )Y is an analytic function
on R” Based on the unweighted spaces L, on R" we introduce their
weighted generalizations L,(w(x)), quasi- normed by

WAV LoD =lwf | L, | (6)

where w(x)> 0 is an (admissible) weight function on R” and 0 <p < oo

DEFINITION 2. Let w(x) be an admissible weight function in the sense of
Definition 1. Let se R, 0 <¢ < oo and let {¢,} be the above dyadic resolu-
tion of unity.

(i) Let 0<p<oc. The space B, (w(x)) is the collection of all fe 5’
such that

o Lig
ILf1B, fwC-)lIi= ( Y 27 (g, /)Y |L,,(W('))H"> (7)

j=0
(with the usual modification if g =oc) is finite.

(i1) Let 0 <p < oo. The space F, (w(x)) is the collection of all f€ §'
such that

Lig

W F 0= (T 2 ko )| o) (8)
j=0

{with the usual modification if ¢ = oc) is finite.

(iii) Let w(x)=<{x)* for some a € R. Then we put

B, (=B ((x>*)  with B =B (0) 9)

640°831-9
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and
F;’,_q(a)=F;‘q(<.\->") with F, ,=F, (0). (10)

Remark 3. The theory of the unweighted spaces B, , and F, _ has been
developed in [13] and [ 14]. Extending this theory to the above weighted
classes of function spaces causes no difficulty. Furthermore, in [12:5.1]
spaces of type B, (w(x}) and F, (w(x)) were investigated in the frame-
work of ultra-distributions for much larger classes of admissible weight
functions. Nevertheless also the later developments in the theory of the
unweighted spaces B, , and F, . see, e.g, [14], have their more or less
obvious counterparts for weighted spaces in the above sense.

Remark 4. Likewise to the unweighted case the above two weighted
scales B), AW(x)) and F7, (w(x)) cover many other spaces such as weighted
{fractional) Sobolev spaces, weighted classical Besov spaces and weighted
Hélder-Zygmund spaces. We refer to [12:5.1] and the literature men-

tioned there.

2.2. Embeddings

In this section we want to collect some important results associated with
our topic which have been proved in recent papers, see [7] and the
references given there.

ProposITION 1. Let seR, O <g< 0 and 0 <p< oo (with p<oo in the
F-case).

(1) B, (w(x)) and F, Aw(x)) are quasi-Banach spaces (Banach
spaces if p=1 and q= 1), and they are independent of the chosen dvadic
resolution of unity {¢,}.

(i) The operator fr>wf is an isomorphic mapping from B, (w(x))

onto B,  and from F (w(x))onto F, . Especially,

wf | BI’, qH is an equivalent quasi-norm in BI‘, A w(x)) (1)
and

s | £, is an equivalent quasi-norm in F, (w(x)). (2)

Remark 1. A new short proof of this proposition may be found in
[7: 5.1]. Nevertheless there are some other, more complicated proofs and
forerunners, e.g., in [12:5.1] or [6].

Using the above proposition we could immediately extend the embed-
ding theory developed in [ 13: 2.3.2 and 2.7.1] to the weighted spaces under
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consideration here if only one weight function is involved. On the other

hand we have also regarded in [7] embeddings with different weights.
Related to the F-spaces this result reads as follows.

PROPOSITION 2. Let w(x) and wy(x) be admissible weight functions and
—<s, <5 <w, O0<p, <pr<oc, O0<qg, < o0 and 0<g,< 0. (3)

(1) Then F ;‘qu(w,(.\')) is continuously embedded in F ,‘, il X))

Fo o vdx) e F ), (4)
if and only if
n n walx)
S ——>8,——  and <e<o (5)
12 D> w{x)

for some ¢ >0 and all xe R".

(1) The embedding (4) is compact if and only if

i n wH(X)
S| ——> 85— — and
P P2 wi(x)

~0 if x| o (6)

Remartk 2. A proof of this theorem is given in [7: 5.2]. Obviously one
can extend the above proposition to the B-scale. Then p, may be infinite
and the interesting weighted Holder-Zygmund spaces %*(w(x})=
B (w(x)) are included.

In the following we will specify our situation in some sense. Let w, and
w, be two admissible weight functions in the sense of Definition 2.1/1. Then
w, /w, 1s an admissible weight function, too, and Proposition 1 tells us

W,

[
L VES oD~ o f ' Fi, (;—(-))JJ (7)

(equivalent quasi-norms), ie. fr—w,f is an isomorphic mapping from
F (w(x)) onto F;,_q((wl;“'u'z)(,\')) where w (x) is assumed to be an
admissible weight function. The same holds in the B-case. Studying
continuous or compact embeddings it is sufficient to investigate it, without
loss of generality, for w,{x)=1. In the sequel we put w(x)=wn(x) and
specify w(x) = (x)>* for some a > 0.
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To finish this subsection we formulate a weak type continuous embed-
ding assertion. Let L, , =L, ,(R") with 0 <p < oo be the usual Lorentz
space (Marcinkiewicz space) on R” with respect to the Lebesgue measure,
see [15: 1.18.6] or [1: p. 216] for definitions.

DEFNITION 3. Let seR. O<p<oo and O<g<o. Let {¢;} be a
dyadic resolution of unity. Then weak-B;, , is the collection of all f'€ S’ such
that

o " lig
I | weak-B, | =< S 2%, ) | L, u'f) (8)
i=0

(with the usual modification if ¢ = oc) is finite. Similarly, weak-F; , 1s the
collection of all fe §' such that

K o ) . Lig
I/ | weak-F, Il = H< > 22 (e )Y (-)I") L, . 9)
j=0
(with the usual modification if ¢ = oc) 1s finite.
Remark 3. It would also be possible to replace L, , by the more

general Lorentz spaces L,,, O0<p<oo (p<oo in the F-case) and
O<u<ac.

ProrosiTiON 3. (1) Under the restrictions for s, p and ¢ in the above
definition both weak-B), , and weak-F;  are quasi-Banach spaces (Banach

spaces if p21 and g2 1) and they are independent of the chosen dyadic
resolution of unity {¢,}. ‘

(1) Let seR, 0<g<o, 0<p< oo (p<oo in the F-case), a >0 and
1/po=1/p +a/n. Then
B, (a)c weak-B‘,‘; and Fl, (o)< weak-F;w v (10)

v 4

Remark 4. A very short proof of the above proposition is included in
[7:24].

2.3. Entropy and Approximation Numbers

Let B, and B, be two complex quasi-Banach spaces and let 7 be a linear
and continuous operator from B, into B,. If T is compact then for any
given ¢ >0 there are finitely many balls in B, of radius ¢ which cover the
image TU, of the unit ball U, ={aeB,: |a| B,||<1}.
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DerFINITION 1. Let ke N and assume T:B,— B, to be the above
continuous operator.

(1) The kth entropy number e, of T is the infimum of all numbers
¢> 0 such that there exist 2! balls in B, of radius & which cover TU,.

(1) The kth approximation number a; of T is the infimum of all
numbers |7 — A|| where A4 runs through the collection of all continuous
linear maps from B, to B, with rank 4 <k.

Remark 1. For details and properties of entropy and approximation
numbers we refer to [2], [3], [9]) and [11] (always restricted to the case
of Banach spaces). There is no difficulty to extend these properties to
quasi-Banach spaces.

Similarly to the previous subsection we will collect some recent, already
known results which will later on turn out to be the basis for the main
result of this paper. We will remind the reader of the papers [4] and [5]
concerning entropy and approximation numbers in (unweighted) function
spaces on domains.

Before quoting that result we briefly recall the definition of function
spaces on domains which are the subject of the succeeding proposition.

DEerINITION 2. Let © be a bounded domain in R" with C* boundary
4Q2. Assume — oo <s< oz, 0<p< o (p<oointhe F-case) and 0 < g < 0.
Then B, (£} and F, (£2) are the restrictions of B, (R") and F, (R"),
respectively, to Q.

We denote by a, =max(0, ¢) for «ae R. Furthermore we always use
a; ~ k2 in the sense that there exist two positive numbers ¢, and ¢, such
that

ek ¢<a,<c,k ¢ for all keN. (1)

PROPOSITION. Let  be a bounded domain in R" with C* boundary 892
Assume

—O <SS, <8y <L, D1 P2 g1, 42€(0, 0] (2)

and suppose that
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Let e, be the kth entropy number of the natural embedding id: B‘)}’,,q.(-‘?) —
B (@) and a, its kth approximation number.

(1)  Then it holds
ey ~ ks (4)
(i) Suppose that in addition to the general hypotheses
either 0<p,<p,<2 or 2<p,€<pa<c or O<p,<p, €0 (5)
is satisfied. Then it holds
ap~k=om (6)

(iii)  Suppose that in addition to the general hypotheses

0<p,€2<p, <o and /i:é' é'~max<———,———>>. (7)

Then it holds

(1v)  Suppose that in addition to the general hypotheses
O<p <2< prs . (8)
Then there are positive constants ¢, and ¢, such that for all ke N
ok r<a, <c k0T (10}

where A has the same meaning as in (7).

Remark 2. The proposition and its proof will be found in (4] and (5].
Obviously, via the elementary embedding

B;‘ucF;_qCB;J, ifand only if ¥ <min(p, ¢q) and v=max(p,¢q) (11)

the above proposition holds also in the F-case, now with p, <o and
p2<oo. (There is a new short proof for the “only if”-part of (11) in
[7-431)

Remark 3. The thin lines in the above diagrams Figs. 1-3 shall indicate
the different level lines on which the exponents of £ € N are constant. Fig. |
refers to e, whereas Figs. 2 and 3 are related to a,. In Fig. 2 we made use
of the convention p| = oo if p; < 1. Then we have for 1/p) € 1/p, < 1/2 there
that 1= 1/2 is equivalent to s, =5, —n/p,.
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3. APPROXIMATION NUMBERS IN WEIGHTED FUNCTION SPACES

3.1. Dependence of the Approximation Numbers on Domains

In this subsection we provide ourselves with a last preparation which
may also be regarded as belonging to the proof of the main theorem. But
just this proof will already become long enough therefore we prove the
following lemma separately and in advance.

LEMMA. Let Kp={xeR":|x| <R}, R=1, be a ball in R" centered at
the origin. Assume

n n
—w<s,<s;<ow, O<p <p,<w and s,——>85——. (1)
P P2

Let af be the kth approximation number of the compact embedding
id: F,! (Kg)—>F} (Kg) with a=a;, keN. Then there exist positive
constants ¢, and ¢, such that for ke N and R> 1 we have

R
A prye S Coly. (2)

Remark 1. The above lemma will be proved in 4.1. We introduced the
function spaces on domains in Definition 2.3/2. We always put a, =ay,; if
A=1 and [A] is the largest integer with [A] <A

COROLLARY. Let 4, ={xeR":2" ' <|x| <2 '}, meN, be the usual
annuli and a} the respective kth approximation number of the embedding
id/; F;]1~4|(Af') — F7 (A;) where again (1) is assumed to be satisfied. Then
there exist positive constants ¢, and ¢, such that for all ke N and je N we

get

ai.ﬁmkS('zak. (3)

Remark 2. The proof is essentially the same as for the above lemma
and will not be repeated here. We have to replace R>1 by 2/, je N, then.
3.2. The Main Theorem

As we already announced in the beginning the main subject of this paper
is to study the approximation numbers of the compact embeddings

3B, ps $2
id® B) , (2)— B2 (1)

<@

and

id* F? ()~ F¥ (

1- 4 P42

[0S
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where the spaces have been introduced in Definition 2.1/2. We also
mentioned that this covers the apparently more general cases where the
unweighted spaces on the right-hand side of (1) and (2) are replaced by
B’!‘fz‘qz(ﬁ) and F}; q:(ﬁ), respectively, for some f <. One can furthermore
imagine to mix B- and F-spaces in (1) and (2) but we give up this
possibility. Moreover, it turns out that the third indices never play any role
such that we can formulate the theorem for the B-case only and afterwards,
via the weighted counterpart of (2.3/11), also the F-case is covered.

Let for 1 <p<oc the numbers p' be defined by l/p+1/p'=1, for
0<p<1 we put p' = oc. Assume that

— o <s <8, <, a>0, O<pi<x, O0<g s,
11 )
—=—t, Po<p,<x, 0<g,<x
Po P 1
and
5:S;—‘n——<52"n">>0' (4)
P 1)

In the usual (1/p,s)-diagram we introduce the following regions (see
Figs. 4-6):

59 (pL!sl) (;1;!81)

-b=a

N\
A

> i:
=N N\
; -
=
h
P

% v,
we |1

0<p <2, a>n(1—;17)

FIGURE 4
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A=2T0 pax <l,i ~1——1>>l
o 2 pap 2)02

g 1 1 1
< P2, A=t — o>~
. 0<p<2<pi<p,. 0<d<u n+p, 2>2

111

, o 1 1 1
I, O0<p,<2<p,<p}, 0<d<ay, ),=;+§—I~);>§

I 1 1
O<p,<2<p,< 0, 6>a>nmax<l-;—.;>, A>=
1 2

1 d 1 1
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P nopy

v, 0 repi<p . soast =2y 1]
b << Pasps jod p2~ R Py 2

Po<p:<p;, 0<d<a
Po<pr<py. 0>«

O<p,<2<p,<w, 0<d<a, A<]
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11
VIII O<p,<2<p2<oc,cx<5<nmax<l———,—)
Py P2

1 1
IX O0<p,<2<p,<co, asnmax<1—~,—><(5.

THEOREM. Let a, be the kth approximation number of the embedding (1)
and let the assumptions (3) and (4) be satisfied. Then using the above
notations we have the following results:

(i) inregionl a, ~k=°om (5)
(ii) inregion 11 a,~k =", (6)
(i) inregion 11, ie. 1l and N1,  a,~k~*% (7)

(iv) inregion IV, ie 1V, and 1V, there exist a positive constant ¢
and for any € > 0 a positive constant ¢, such that

Ck —xm—min{ Lip) — 172, 172 — 1/p,)

< ak < Cckfau‘n —min(lip; - 1,2, 1/2 — 1ip;) + n; (8)
(v) invregionV a, ~ k~noam (9)
(vi) inregion VI a, ~k-xnrin=lin, (10)

(vil) in region VII there exist two positive constants ¢, and ¢ such that

—d/n —min( /p, — 1/2, 1/2 — 1} —on,
(']k d/m —min( 1/p) ~1/2, 172 "”2’<a,\.<czk onq (ll)
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(viit) in region VIII there exist two positive constants ¢ and ¢ such that
—xinm - mi iy = 120102 - 1 py;
(,]k aim—minClipp - 172,142 l"’-)Sa,‘.Sczk 1‘11; (12)

(1x) in region 1X there exist a positive constant ¢ and for any ¢ >0
a positive constant ¢, such that

ck o meip S22 p g e ko B mard Sy b (13)

Remark 1. As we emphasized in front of the theorem the results also
hold in the F-case.

Remark 2. Depending on the different values for the parameters p, and
o we indicated in the diagrams Figs. 4-6 the level lines for the corre-
sponding exponents. Concerning the above defined regions VII-IX we
omitted this, for looking at (vii)—{ix) in the above theorem the gaps
between upper and lower bound appeared too large for having a
reasonable intention what the right behaviour of the exponent could be.

Remark 3. Comparing the above theorem with its counterpart (related
to entropy numbers) as it is presented in [7: 4.2] we omitted the line “L”
where J =« in our investigations. Up to now we have not succeeded in
developing a separate theory there. Nevertheless we could receive upper or
lower bounds for a, via elementary continuous embeddings and the known
behaviour for d >« and ¢ <« On the other hand we can hardly expect to
get a nearly sharp result following that way as Remark 4 below will tell us.

Remark 4. We want to hint at a result of Mynbaev and Otel’baev [ 10:
V. §3, Theorem 9] which in terms of our situation for id: F} ,(a)— F) ,
and with ’

s;>0, 5,=0, l<p,€<p>,<2 or 2<p, <p,< >,
n n t14)
o >0, d=s5, ——+—>0,
Pr P>
gives that
k—om, 0<d<a
) k —ain
a,=a,(id) ~ , o=ua, kzk, (15)
log k
ki, 0> a

The compatibility of our results and those in the cases 0 <d <« and J >«
is the best possible one, namely coincidence. Therefore we should also look



WEIGHTED FUNCTION SPACES 119

for estimates similar to the above ones in the case J =a. Although the used
methods to prove (15) in [10] are completely different from ours we take
(15) for granted and try to find a generalization in our sense, iec.
—U <y, <5<, 0<p£p-<2 or D<p,<p;<ow, O0<g <o and
0<g¢.< oc. Remembering the situation for the e’s in [7:42] a
dependence on the third indices may well happen. In (15) we have
¢, =¢->="2 and thus a possible influence could have disappeared.

4. PROOFS

4.1. Proof of Lemma 3.1
In the sequel we will denote by p =min{1, p) for any p, 0 <p < .

Proof. Step 1. As a preparation we first investigate a special open set
2 < R", defined as

N e
.Q=UKU', K(i)me:@‘ j-‘ﬁl (1)

j=1

where NeN is arbitrary and {K"'} ™ | are shifted open unit balls. As
usual, 4 means the closure of an open set 4. The idea behind is first to
handle this simpler case above, i.e. to estimate the respective approxima-
tion numbers «'**' by a, and afterwards to cover K, by finitely many such
Qs from (1).

Let “EF;:I.J“(Q)* then, in a slight abuse of notations,

u with u;e F' (K'Y) (2)
. It

<
I
e

and, by definition,

N R
Hu ‘ F‘;"l‘ql(Qm[ll = Z “ul l F;l]lql(Ktjl)H P (3)

i=1

to adapt it to the localization principle for F', -spaces, see [ 14: 2.4.7], used
in the second step.
Let £> 0 and choose T ;e L(F;'l_q,(K‘»”) - Fr (K} such that

)
rank T,<r,  j=1,. N, (4)
and

= Ty, | E (KNP ()P als g | (K7 (5)

1~
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where we additionally used a\*'"" =q,, ke N, for those (shifted) open unit

balls K'/'.
Let T=3 | T, be such that

j=1
N N N
Tu=Y Tj< Y u,) =Y Tu,. (6)
j=1 !

j= =1

Then it holds

N
%lu —Tu , F;: 113(!2)H 2= Z ||ul - T,/u_i | F/‘)zg zl:(lcj))H "
j=1

lu, | F2 (K| 7

<l +&)™a?’ P

ek

i=1

<(4aBal jul FY ()7 )

P

where we used (3), (5), p, <p, and the special construction of Q. By (4)
and (7) we have for arbitrary small ¢ >0

lid,— T <(1+¢)a,, rank T< Nr (8)

and consequently

a¥' <a,. (9)

Step 2. We consider now the above ball Kz, R>1, and look for a
suitable covering in the sense of Step 1. Let (1/1) Z” be the lattice such that

1 1
De-2"<3keZ"0=—k (10)
n n
holds for every lattice point ¢/, which means in terms of its coordinates
1 1 ;
(0,,...0,)e-2"<=3(k, ...k, )eZ" ()’:Ek” j=1 ..,n (11)
n _ :

Furthermore we have the following sub-lattices ZJ,

1 3n—1
Zy=0+32" e I eje{o,..., "n } j=Ll.n. (12)

In other words, any sub-lattice ZJ, is a shifted 3Z"-lattice which is uniquely
specified by its “basis point” @ in the cube [0, (3# —1)/n]". Thus

3n—-1

1
#{()e;l”:Os()js }:(3/1)”::L (13)
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and obviously
L 1
U zi,=-2". 0.0 (14)

r=1

where we introduced the notation

1 3n—1
Q:{()e;l":()g()js ”n ,j=1,...,n}. (15)

Let B! be the following system of translated unit balls
B ={K(x) x,eZ},} {16}
for 0,e Q. r=1, .., L, and K{(x,) stands for a ball of radius | centered at x,.
Consequently (14) and (16) lead to
L
U B =R" (17)
r=1

Consider a resolution of unity ¢ = {¢}}, . ,_, _,, assigned to the balls
K(x,) from (16) such that supp ¢; < K(x,)€ B” and

L
Y N e =1, xeR”. (18)
r=1 lei"
Setting
o= ¢, r=1..1L, (19)
le Z"
(18) becomes
L
Y odx)=1, xeR" (20)
r=1
and
supp ¢, < B”. (21)

Let ¢, € C*(B") be such that supp Y, = B} and

Y (x)=1, xesuppo,. (22)
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Let ¢ >0 and assume 7,: F}l,. qI(KR NBY)—F7 Kz B}) an operator on

B, extended by zero outside BY n K, rank T, <k and
i(id — Tr)m;‘mKRh S (1 4e) (al P KR Py (23)
Caused by the symmetry of our construction we have for large R
|(id—T )WMRH <(1+e)m(afinkayn p=1 L (24)

Let ue F‘l q( =) Thus (20), (22), (24), p, = p, and the already mentioned

lOCdllZdIlOI‘l prmc1ple for F-spaces yield

7

F2 (Kg)

I
Z ,T0,u

<o S Woou—y,T,oul F? (KgoB)|

r=1

L —~
<er ) leu—Toul F)  (Ken B

r=1

P>

L
¢, Z (id—T, )|B’ml\R\ “Q;“‘F” K ~ By W

r=1

ey(L+2)7 (@B KRy s | P 1(1<R)u”? (25)

Consequently we have for T:=%"_| T,, rank T < Lk,
ak <caPin ke, (26)

Let N, be the number of balls K(x,) belonging to B” which have a non-
empty intersection with K and put N :=max{N,, r=1, .., L}. Again for
large R we get N~ N,, r=1, .., L, and after substituting k€ N by Nk, (26)
becomes

aL'\l\Scla’\Iilm’\R'<C2ak (27)
where we used Step 1. Furthermore by usual volume arguments we have
LN ~ ¢R" and so finally

<(')ak. (28)

t|R"k ~

4.2. Proof of the Main Theorem

We divide the long proof into 7 steps. First we prove the estimates from
below. Mainly there exist two different methods: to use respective estimates
for approximation numbers in function spaces on domains or to shift the
problem to the / -situation where one already has such estimates. These
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first two steps will be the same for the B- and F-spaces. Afterwards we
show the sufficiency of proving the upper estimates for the F-spaces as we
can then reduce the situation of the B-spaces to that one. We have to
follow this rather complicated way as we want to make use of Lemma 3.1
which holds in the F-case only. Caring about the estimates from above the
main tool will turn out a tricky partition of R” into annuli in connection
with the already investigated situation on domains, see Proposition 2.3 and
Corollary 3.1.

Proof. Step 1. LetO<d<aand O<p, <p,<2o0r2<p, <p,<xcor
Po<p,<p, <, le, we handle regions I and V. By the well-known exten-
sion-restriction procedure and Proposition 2.2/1 we have for arbitrary
smooth bounded domains Q = R”

a (B

FARRS

(Q2)— B;;qz(Q)) < cak(B'[",'l‘ql(oc) - B J=ca, (1

-4

where we additionally used the multiplicativity of approximation numbers.
Now recall the already mentioned results for bounded domains, see
Proposition 2.3, thus (1) yields

- . 1
a,=ck=° ", o+=s1—s2—n<——~—> . (2)
Pv P/

Likewise we handle the situation in the regions III and VII where (2.3/8)
and (2.3/10) provide

a(B () B®

P4 P10

(Q))=ck™*
and consequently
a,=ck™* (3)

with

P (1 11 1) 5+m_n<1 11 1>
L= —max| ——g,z—— |=— m{——z,z——1J.
n 0\, 22 5/ e p 22 p,

Hence we have proved the lower estimates in (1), (iii), (v) and (vii).

Step 2. We are now going to prove the lower estimates of (ii), (iv),
(vi), (viil) and (ix). Although this could be similarly done for B- and
F.spaces we will concentrate on the F-spaces. Regarding the lower
estimates in question one observes that no s-parameters are involved in the
exponents. It is only =35, —s,—n(l/p,—1/p,)>x assumed to hold.

640 '83:1-10
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Consequently one can immediately get the estimates in the B-case via the
elementary embeddings (2.3/11) and their obvious weighted counterparts

BA\'+c(a) c FA\‘

24y P9

(0) < B, () (4)

for seR, 6>0, 0<p<oc, O<gy< o, O0<¢, €0, 0<g, < a0, a>0. In
detail, the multiplicativity of approximation numbers then yields
@ (B ,(0)— B} )2 calFy {0 F) ) (5)

Pty Prot

where O<u <o, O<u,<oc and >0 and thus always (s,+¢)—
(s,—¢&)—n(1l/p, — 1/p,) > a is satisfied.

We now want to make use of an argumentation similar to that one in
[4:43.7] and [5:4.3.1]. We consider the following commutative diagram

51 idF F 82
—_—y
I‘1v‘/1(a) Pas iy

'

II;\;/ idy [}:’
where N, =2/ id, is the identity map from 1}};/ to {77 and id" as in (3.2/2).
Recall that /7', me N, 0 <p < o, is the linear space of all complex m-tuples
vy ={y,), furnished with the quasi-norm

nt 1ip
[y 10 =< > |.1'_,-|"> :
i=1
We divide R” into the usual annuli 4,= {xeR":2/"'<|x|<2/*"} for
jeN. Let @&eC™(R") with supp@c<B,, the unit ball, and, say,
{ @(x)dx=1. Let 4 be the following operator
N,

A:I;f;/-»F“ (a), {a, ) M > Y a,P(x,—x) (7)

Py r=1
r=1

where the x, are those k € Z” such that x, = k € 4,. Neglecting constants we
thus can assume that there are N; such points. Applying the localization
principle for F-spaces, see [ 14:2.4.7], we may assume

N,
|4, } | o g (217 ~270 N o, | (8)

r=1

for {x>*~2"in A4, In other words,

lA) <27 9
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Consider now a map ¥e C™(R"), supp ¥ concentrated near the origin and
¥(x)=1 for xesupp @. Denote ¥ (x):=¥(x,—x), r=1,.., N, Then we
put

B: F/‘,q-*l;' FASRAVA IS (10)

r=1"

Estimating the norm of B we get

If W) = ’J S(x) PUx, — x) dx

= “ Ax) Plx, —x) Ax,—x)dx (11)

where A e C”“(R"), supp 4 concentrated near the origin and A(x)=1 for
xesupp ¥. Using 4,(x)= A(x, —x) then (11) becomes

I(f. P = H (fANX) P(x, —x)dx

=[((f4,) = ¥)(x,)]|

< sup [((fA4,) = Y <S4, 1B, | (12)

VN S
veR!

for any o€ R. This follows from the characterization of these spaces via
local means, see [14:2.5.3]. The clementary embedding £} < B7 , for
ss—n/p, > a yields T

S < IfA L F2 (13)
Applying again the above mentioned localization principle for F-spaces to
(13) we get

Py

S LS FR | (14)
r=1

which provides
1Bl <e (15)
By construction we have
id,;=B id* A~ (16)
Hence (9), (15) and the multiplicativity of approximation numbers lead to

a (id"y= 2 7a,(id). (17)
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Concerning a,(id,) we make use of [5:3.2.2 and 3.2.4] which tells us

a,(id)) = 2 Vim =ty in region VI, (18)
alid)~ 1 n region 11, (19
agidy) > ¢2 /ity = 12121 i TV, VI and IX (20)

for k=271 Then (17)-(20) finally result in the estimates from below in
(it), (iv), {vi), (viii) and (ix).

Step 3. We now turn to the estimates from above. First we will show
that it is sufficient to deal with the F-case only. Remembering our remark
at the beginning of Step 2 this is obvious concerning the regions II, IV, VI,
VIII and IX, whereas the upper estimate in VII is a direct consequence of I:

a (B

P-4

(a) > B},

N N
P r/:) S cagd Bn

o1 83
() — BP]_ q:) ak(Bp}_ i

~ By ) 2D

1~

where we choose p, such that 0 <p, <p, <2 and s, R such that

n n
§3—— =8y —— 8> <8y < 8. (22)

Pa [72,

It remains deriving the cases (i}, (iii) and (v) in the B-case from those in
the F-case.
We remember again a construction from [4:p.146/147] where

A

fe B, (R") was divided into f=3"_ (0, /)" + 37 v, (@,/) =fx+f"
with Ve N and {(p,»}jf": o a4 smooth dyadic partition of unity. Subsequently
the above function f was splitted up into fy=fn | + /v >. We do not want
to repeat all the details. We are interested only in the final result that came
out : via the above way a linear operator f— f— f, , could be constructed
approximating the embedding in question in region I. The most important
point for us is its linearity which allows us to use interpolation arguments
even in that case of approximation numbers. Assume the estimates from
above in region [ to be true in the F-case, i.e. we have

a (F”

Py

()= F2  y<ck " (23)
where 0 <s, —s,—n(l/p, —1/pr)<a, 0<q, <0, 0<q¢g,<oc. We choose

now g, < s, <a, such that it holds

0<5l=al——n——<sz—~n-><a, 0<52=02—-n~—<52—~n~><a( (24)
P P P

and

s, =(1—0)0,+ 00, (25)
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for some 6§, 0 <@ < 1. Then (23) applies also to the embeddings F;,’: o)
F> . and F;I )= F> for arbitrary 0 <u, <oc, O <uy < oo, Holding
now the target space F;'f’__% fixed we have for any hinear operator T, which
maps o

T:Fp ()= Fp T:F? (a)—F7

2- 42 s P g2

that via real interpolation we get

T g (0 PR @ = 3 F2 o, (26)
1e.
T: B;‘l.‘“(a)a F;:w; (27)
and
ITIB ()= F2 |
<CIT|FJ ()= F2 W VT FE (0= F3 % (28)

Here it was essential to have the same target space which then, in fact, is
not interpolated. For details concerning the real interpolation of B- and
F-spaces see [ 13:2.4.2] for the unweighted case. The needed extension to
weighted spaces then follows from Proposition 2.2/1(11). Specializing now T
by fr—f—fyv , we have from (23), (24), (25) and (28)

4B,  (2)=F?  )<ck " (29)
Afterwards we repeat the same, now fixing the original space g, ,(x). In
other words, (26) and (27) are then replaced by

T: (B;’ll ‘Il(a)‘ B;’Ir ‘/l(a))()' w7 (FZZI y® F:j sy )’)‘ 42 (30)
and
T B‘[’;’l‘ ql(ot) - B};’1 @ (31}

where we choose ¢, < s, <a, such that

0<5,=s,~—n——<01——’l><a, 0<0‘3=s,—l—»<a‘2—~n—><cx (32)
P 2 P

and

s:=(1—-0)0,+ 00, (33)
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are satisfied. Consequently we finally get from d =(1 — ) J, + 0J, that

an(B,  (x)—> By )<ck (34)
in region 1 where always the respective F-result is assumed to hold. In
particular we have

a (B (oc)——»B;i.qZ)SCk ot —a2)fm 0<s, —s,<a (35)

1~ 4y
and 0<g, <o, 0<g,< oo and that is just the key to cope with the
regions 111 and V. The construction is simple but effective. We always have
now 0 <d=s,—n/p, —s,+n/p, <o and thus can choose ;€ R and o, R
such that for some a; >0, x,>0, o, + o, <a it holds

n n
O<s,—0,<n,, O0<o,———0a,+—<ax—a,—a,, 0<0o,—5,<a,.

71 P2
(36)
Next we split our embedding id: B‘,‘;‘l_q](a) — Bl‘, 0 into five:

id,: B:’l\~tn(°‘) —»B;:‘r](oc—al) (37)
idy: Byl (a—a2)) > F]l (0 —oy) (38)
l'd_,:F;I‘.”](:x—oc,)—+F;§.”l(oc3) (39)
id,: F; W(%2) = B; ESY (40)
ids: B; rz(“l)“’B}Z,q, (41)

where 0 <1, <p, <y, <o, O<u, <p,<1,< 0 and 6, and o, as in {36).
We apply (35) to id, and ids, note the continuity of (38) and (40) and
hence the multiplicativity of approximation numbers provides

ak g (.k s — o — (g — .\'z)s“nak( Id;) (42)

Assuming now the respective estimates in the F-case to be true, (42)
becomes in region IlI

—{st—a)n— —51)in— - — ma 21/ ipy— 172 —2
(lk<Ck (st —a)in—{a2 —s21)/n —(a| — a2)/n — max( 1/ Lips. lipy =1 ’=Ck 2 (43)

and in region V

a, < ek~ auin—(or—s)in— (o1 —onin _ o (810 s (44)
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Regarding (43) we have only to ensure in region III that (¢, —0a,)/n>
1/2+ max(1/2 —1/p,, 1/p; —1/2) can always be suitably chosen. In other
words, by (36) it is necessary to have

A — o 1 1 1
1__%_.9_-+_1__L>_+max<__i,_“_l> (45)

which 1s equivalent to

1 1
O<ac,+cxz<oc—nmax<-—,l—~>. (46}
P P

In region III we have 4> 1/2 and é <a and thus conclude a > n max(1/p,,
1 —1/p,) such that o, and «, in (46) may be suitably chosen. Consequently
the theorem is proved assuming the upper estimates in the F-case to hold.
It remains to verify this supposition.

Step 4. Dealing with the estimates from above in the F-case we rely on
a partition of R” into annuli up to a certain radius and a simultaneous
control of the behaviour outside. For this purpose we make use of
Corollary 3.1 several times. Now a, always means a,(id”). Let /e N
and @}’ be again the kth approximation number of the embedding
id'"; F) (A)—>F} (4), where 4,={xeR": 2T < x| <21 for 1=
1,2, and 4,={xeR":|x| <2} are defined as usual. We start con-
sidering region 1. Then Corollary 3.1 and Proposition 2.3 give

alklbgczlék*()'/‘n' (47)

In the sequel we always investigate suitable unions {J;_, 4, in R" and
LeN js chosen sufficiently large. We consider operators B,: fi—f,,,
[=0,1, .. L, (in the sense of a suitable assigned resolution of unity) and
get from the localization principle

B | F <2 |f | F2 (o). (48)
We set
L
B“’:fl——»(id— > B,>f (49)
=0
and have

“BL+1“<C2—01L. (50)
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Taking the additivity of approximation numbers into consideration
(47)-(49) yield for k=3 1_ k,

L+1 L . .
afz:a{?( > B,><c. <J\B"“H m Y (ay )7 B ’>
0

/= =0

- L —~ o~ o~
< (,2 (2 - Lap, + Z 2/()'[13klfl()‘;n) p22 710([1:)
(=0
o~ L o~ R —~
=0, <2 Lap2+ Z 2 I(xW’)’I,:k,ﬁmw)p:> (51)
/=0

where we used again the localization principle for F-spaces and denoted
p>=min(l, p,). Let £>0 and put k,=M2~% for some M >2% (More
precisely, we should choose constants ¢;, /=0, 1, .., L, near 1 such that
k,=c,M2 %eN, but we neglect this in the following as it causes no
trouble.) Then (51) becomes

L
‘lflz,ng('z <2—Lx/7:+M -{din} py Z 2*/(170’7!](0;’1))[):)

/=0

<C3M7(d;’n);\: (52)

if L is chosen sufficiently large and e¢<n{(a—3J)/6. This procedure
essentially uses 0 <& <a. Thus (52) is the estimate in question
a, < ck ="

The result for region VII now follows similarly as it did in the B-case, see
(21). At this point we want to introduce a simplification. Regarding (51)
and (52) the number p, has finally no influence at the result. Therefore we
will always assume p,=1 in the sequel though this is not quite true for
p><1. But after all also this exponent cancels itself appearing on both
sides.

Step 5. We care about region III now. Recall the already known
homogeneity estimates, see [7: 5.4/4,5] or [16: 2.2]

3 |- MY s 1
ARV FY <R mIFTF I sisn( 1) o R21 0 (53)

P
and

IAR)VF2 I <cR> £ [F2 |l 5,<0, R<L. (54)

20 42
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Applying these results to the annuli 4, we get for s, >n(1/p,—1})_ and
Sy < 0

a(kj'(F;lpm(Af)—’F;:yd:(Aj))s"zjdk ’ (33)

where we additionally used Proposition 2.3. Furthermore, we have {x)>* ~
2% in A; and hence

a(ki'(F;:l,l“(Av/—’ M= F2 (A))<e2 Dk 2 (56)
The counterpart of (51) reads then as
L P
akg(, <2 —71L+ Z 2/(<)~:ukl)~> (57)
j=0

where we assumed ;)\2 =1. Then k,= M2 ", £>0, and a suitable choice of
&< (x—20)// results in

<274+ M ), (58)
Assuming L = //xlog M we finally arrive at
a. < ck 4 (39)

which is the desired result in region IIl under the additional assumptions
s, >n(l/p, - 1), and s, <0. We will remove these restrictions by shifting
the problem to an already known situation. The lift operator [, on §’,

Lf=(1+[x>"?f)". oeR, (60)

maps F; | isomorphically onto F o (for details, see [13:2.3.8]). This
assertion extends to the spaces £ (x), see [12: Chapter 5] and the
references given there.

Suppose first 1 <p,; <2, ie. n(l/p,—1), =0. We choose s, such that
$2<so<s; and s\ =5, —so>n(l/p, — 1}, and s, := 5, — 5, <0. Then (59)
together with A’ =1 gives

alF} ()= F7  y<ck™?

P14z
and hence (60) guarantees
d; < Ck B A.

The remaining case 0 <p, <1, i.e. n{(1/p, — 1) >0, is treated similarly.
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Step 6. We handle the cases (iv) and (1x) of the main theorem now
where 4= (s, —s,)/n—max(1/2—1/p,, l/p,—1/2)=0/n+mn(1/2 —1/p,,
lip,—1/2}> 12, 0<p, <2<p, <, d>a>0 and s, <s, are assumed to
hold. We start dealing with case (iv). We apply the above proved result in
region I for some s, R,

8§y <855 < 8, 6,=A’1~£—<5'3—£><a. (61)

In particular, we split up our embedding in question

d(FY (o) > F2 V=id(FY > F2 ) id(Fy (1) F2 ) (62)

82

P24

where the embedding F;j”h—>F is continuous. Then (59) applied to

Fy (@)= F3  and s, chosen such that
s, /1 11 1y I
4=y min(s—— ——2 - 63
] n+mm<2 P2 P 2>>2 (e

together with d, <« finally yields for arbitrary ¢ >0
a < L',_.k ain —min(1;2 — Lipy, Lipy — 1/2) +l:’ (64)

re. the desired result in region IV. Here the assumption J>a>
nmax(1—1/p,, 1/p,) becomes important for it guarantees the possibility to
find s, € R as described in (61) and (63), that is §, <a and 4, > 1/2.

Concerning region (ix) we follow the argumentation of the previous step
g{ld arrive at (57) now with 6 >« Choosing k; = M2%”, ¢>0, yields (recall
pr=1)

L
ot S €5 (2*“L+M*" Y 2/(”‘*1*’**) (65)

Jj=0
which is for ¢ > (6 —x)/A >0
Aeraae <2 7+ M P, (66)

Assuming L > A/xlog M and afterwards the substitution k=cM'* ¥
leads to

ak < (,Ekfia,“(a#»b:l. (67)
We remember ¢ > (J —a)/4 and hence

ak < Ccrk — Ao + & (68 )
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for any ¢' > 0. Looking again for the best possible 2 and & as above (in par-
ticular, we introduce again an additional parameter s; such that for J, from
(61) it holds 4, >n max(1 —1/p,, 1/p;) 2 a and for 4, from (63) 4, >1/2)
we would have d =nmax(l —1/p,, 1/p,) for 4Z=1/2. Consequently (68)
becomes then

I S Y : .
ukSCCk a/( 20 maxil Vpy, Lipah +¢ (69)

for arbitrary ¢ > 0, i.e. the desired upper estimate in region IX.

Step 7. We concentrate on the regions II, V, VI and VIII now. The
counterpart of (47) reads for p, =p, now

atkli < (.2l(x1 —s2)fe — i ﬁ\'z)y“n. (70)

For ¢ > x we determine k,, /=0, .., L, by
ktl.vl —s2)m 2L(a+e)2/m —-s—a—c) (71 )

where ¢ > 0 satisfies £ <s, — 5, —a. Hence

L L
Z kl — 2Ln‘y’1.s'1 —s2HSsp~s1—(5) ~s1—x—2&)) Z 2/(.\1 —sr—a - &Infls) — s)

I1=0 /=0

L
— 21.n Z 2(/7 L)is)—s1—a—Inils) —») < (_2Ln (72)

i=0
and
L L
Z 2/(A‘| — 52 —z)kl—v(xx —s2)in _ Z 2/431 —sr A —s 2+ +e)2 —Lix+¢)
/=0 1=0
L
=2—:xL Z 2.«:{/— L)<(.2 ~al (73)
/=0
and the counterpart of (51) (with p,=1) obviously results in
4y < k= (74)

Now (74) leads almost directly to the upper estimates in {ii) and (vii). We
choose s, as shown in Fig. 7 such that

So—n/py —(S2—n/ps) =0 — (8, —5¢) >0
and

$y—8p>a



134 DOROTHEE HAROSKE

ol (Losi), (L,s)

/'(;I;vSO)

FiGure 7

Then we have F! < F] and (74) applied to F  (x)—>F = yield
together the upper estimates in region II and VIIL

We now deal with the regions V and VL. From (70) we have

aNF

Fatd|

(A ) F[\"' - (AI)) gc.zl(,\\ —f,sz\kf (81 \':)n.

Concerning the remaining embedding F‘ (A ) — ,‘, ( ) for p,<p, we
want to make use of Hoélder’s inequality. We proceed as in [5: 4.1.1] which
is based on local means. Let ¥, € C(R") be such that [y (x})dx#0, let
W =A™, for NeN and introduce the local means

t!/(t..f)(x):i‘11/()')f(,\'+ty)cbr, xeR" >0 {75)

and define o(t, f¥x) similarly. Then we have for 2N > max(s,,
n(l/p,—1),) that for fe F? (R")

JARA]

L

(76)

”

1igs
Wl )1 L, R")i+n< T 20 g2, £ > ()

is an equivalent quasi-norm in F e LR, for details see [ 14: 2.4.6]. By the
usual extension-restriction procedure and Hélder’s inequality for p, <p, we
consequently get

lid: F;:x~‘I:(A’) - F2 (A <2 Vip = oy, (77)

P
Then (70) and (77) give

a;(”Sczldkf(.s'l—,\'gl‘“n (78)



WEIGHTED FUNCTION SPACES 135

both for the regions V and VI, s, > s, and l/p, < l/p, < 1/p, + a/n. Let first
d<a and put k,=M2"" [=0,..L, for some £>0 and a constant
M > 2% The counterpart of (51) (with p, = 1) becomes

L
a(»llllgl.z <2 1L+ M 15~ 8250 Z 2/(;) A+ ELNY - ,y:)sl!))
I=0

<(,3(2—1L+M (.\‘l—_\'l)‘n)gc,Aﬂl—(»‘l sain (79)

if ¢>0 1s chosen sufficiently small, ¢<n(a—0d)/(s,—s,), and L=
(s, — 8,)/(na) log M. Thus (79} gives the results in region V,

ak < ('k {8 - .\'3)‘11‘
[t now remains to prove the upper estimate in (vi). Let
. 11
oon(2)
. P2 P
(a 1 1 ><o 11 )
nop, py/N\R Py Py
Then obviously x >0 for 6 >a and l/jp, < lip. < lip, +a/n, s, > s,.
Furthermore 6 — x + »(s, — s,)/n >0, for

Sl _S2

O—a+x

:5#x+z<(_>_-lﬁ+1>:_‘_1(_o;a)_>o‘ (80)

n n o p, p n n

Pr "

Let k,= M2 ™ [=0,.. L, then the counterpart of (51) reads as

L
a”Mg(.z <2 - 1L_+_ M SN a2 Z 2/1.) ~ %+ #{s] A\g»n)>

/=0

L
=c, <2 xL + M— (5] — ,\-:}“uzL(O@ X+ x{s) — ¥3)in) Z 2(17LN<5 < x4+ xS — 820 ni>

/=0
g(,}'(z xL+M' () ,\':},"lzL(lS”IfK(A\]".\:)‘”)) (81)

where we used the above mentioned properties of ». Substituting the above
special » we get for L= l/d{a/n— 1ips+ 1/p,}log M

aq " < (,:M =i+ gy — Lipy

what we just looked for in the region VI. This completes the proof.
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