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In this paper we study weighted function spaces of type B~j IR", w(x)) and
F;.. 'I( IR", 11'( x)) where 11'( x) is a weight function of at most polynomial growth,
preferably w( x l = ( I + Ixl" ),2 with ex E IR. The main result deals with estimates for
the approximation numbers of compact embeddings between spaces of this type.
Furthennore we are concerned with the dependence of the approximation numbers
ak of compact embeddings between function spaces B~ Jill and F~.,/il I on an
underlying domain il. "19~5 Academic Press. In..

I. INTRODUCTION

In [4] and [5] entropy and approximation numbers of compact embed
dings between function spaces of type B;. q and F;, q' S E IR, 0 < P :::; ex (with
P < CfJ in the F-case), 0 < q :::; CfJ, on a bounded domain Q in IR" were
thoroughly investigated. Recall that these two scales of spaces cover many
well-known classical spaces such as (fractional) Sobolev spaces, H6lder
Zygmund spaces, Besov spaces and (inhomogeneous) Hardy spaces. In [7]
we extended these results in some sense, i.e. we studied weighted function
spaces of type B;.q(IR", w(x)) and F;;,q(lR", w(x)) where w(x) is an
admissible weight function of at most polynomial growth, that is a smooth
function with

0< w(x):::; cw(y)(x - y)" (1)

for some :x ~ 0, some c> 0 and all x E IR", y E IR". As usual <x) =
(1 + I.\f) 1/2, The main result of [7] dealt with relatively sharp estimates for

104
0021-9045/95 $12.00
Copyright :l',', 1995 by Academic Press. Inc.
All rights of reproduction in any form reserved.



WEIGHTED FUNCTION SPACES 105

the entropy numbers of compact embeddings between function spaces of
such type

into F'! (lR",w(x}} withfJ>O
P:., C/:.

(2 }

and their B-counterparts.
We applied these results in [8] to eigenvalue distributions of pseudo

differential operators. In the present paper we return to the study of the
compactness of embeddings of type (2) for its own sake estimating the
related approximation numbers.

Weighted spaces of the above and more general type have already been
treated before, especially by H.-J. Schmeisser and H. Triebel in [12: 5.1 ].
Nevertheless we sketched new shorter proofs for some relevant facts in [7 ]
relying not very much on former results.

The plan of the paper is as follows. In Sect. 2 we introduce the spaces
B' (lR", w(x)} and F p' (lR", w(x)). We collect some recently proved resultsp. q • q

which will be of great service for us later on. In particular, we remind the
reader of the equivalence of the quasi-norms

and (3 )

and their B-counterparts. Furthermore recall that for -Xi < 52 < 5 I < ex,
o<PI ~Pl < X, 0 < (ll ~ X and 0 < ql ~ x, the embedding

into (4)

(and its B-counterpart) is compact if and only if

n n
SI-~>Sl-~

PI Pl
and

\I',(x)
--- ..... 0 as Ixl ..... x.
\I'\(x)

(5)

Finally we mention a helpful weak type embedding

(6)

where oc> 0 and l/po = lip + oc/n.
Turning to the entropy and approximation numbers we refer to the

respective estimates related to function spaces on domains published in [4 ]
and [5]. In Sect. 3 we regard as a preparation the dependence of the
approximation numbers on the certain domain Q on which function spaces
F~.q(Q) and B~.q(Q) are defined. Afterwards we state our main theorem.
Sect. 4 contains all the proofs.

Unimportant constants are denoted by c, occasionally with additional
subscript within the same formula or the same step of the proof. Further
more, (k.//m) refers to formula (m) in subsection k./, whereas (j) means
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formula (j) in the same subsection. In a similar way we quote definitions,
propositions and theorems.

2. DEFINITIONS AND PRELIMINARIES

2.1. Weighted Function Spaces

Let [R" be the Euclidean n-space. We introduce the notation <x> =
( I + Ix1 1

) 1/1 on IR".

DEFINITION I. The class of admissible weight functions is the collection
of all positive CY functions l1'(x) on [R" with the following properties:

(i) for any multiindex )' there exists a positive constant c;, with

for all x E [R", (1)

(ii) there exist two constants c > 0 and:x ~ 0 such that

0< w(x):( cll'(y)<x - y>~ for all x E [R" and Y E [R". (2)

Remark 1. From (2) it can be easily seen that for suitable constants
C 1 > 0 and C1 > 0 it holds

for all x E IR", y E [R" with Ix - yl :( 1. (3)

On the other hand we have for admissible weight functions II'I(X) and
w1(x) that both wl(x) 1I'1(X) and H',I(X) are admissible weight functions,
too.

Remark 2. We want to explain briefly that the apparently restrictive
assumption for w( x) to be a C Y function is in fact almost none. Let 11'( x)
be a measurable function in IR" satisfying (2) and assume h(x) ~ 0 to be a
eX-function in IR", supported by the unit ball with, say, Jh(x) dx = 1. In
other words, h(x) is a so-called mollifier. Then (h * w)(x) defined by

(h * w)(x) = Jh(x - y) w(y) dy (4)

is an admissible weight function according to the above definition. As IV

and h * IV are equivalent to each other this finally justifies to concentrate
only on smooth representatives without loss of generality.

Now we will briefly remind the reader of the well-known spaces B' and
P.'!

F~, q because we want to define their weighted counterparts afterwards. All
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spaces in this paper are defined on [R" and so we omit "[R"" in the sequel.
The Schwartz space S and its dual S' of all complex-valued tempered dis
tributions have the usual meaning here. Furthermore, L p with 0 <p ~x;, is
the usual quasi-Banach space with respect to the Lebesgue measure, quasi
normed by III· I Lpll.

Let cp E S be such that

supp cp c { y E IR" : Iy I < 2} and cp(x) = 1 if Ixl ~ 1, (5)

let cp)x)=cp(2-Jx)-cp(2-J+!x) for jEN and put CPo=CP. Then since
1 = .t)":" 0 cp)x) for all x E ~1I, the JCPJ form a dyadic resolution of unity.
Given any fE S', we denote by f and fV its Fourier transform and its
inverse Fourier transform, respectively. Thus (cpJ)V is an analytic function
on [R". Based on the unweighted spaces L p on [R" we introduce their
weighted generalizations L p ( w( x)), quasi-normed by

(6)

where w(x) > 0 is an (admissible) weight function on IR" and 0 <p ~ w.

DEFINITION 2. Let w(x) be an admissible weight function in the sense of
Definition 1. Let S E ~, 0 < q ~ wand let {ipj} be the above dyadic resolu
tion of unity.

(i) Let 0 < p ~ w. The space B;. q( w( x)) is the collection of all f E S'
such that

(with the usual modification if q =x;) is finite.

(ii) Let 0 < p < w. The space F;. i w( x)) is the collection of all f E S'
such that

(with the usual modification if q =x;) is finite.

(iii) Let w(x) = <x)~ for some OCE IR. Then we put

640RJ'I-9

B~. q(oc) = B;. q( <x)"') with B" = B' (0)p,q p,q (9)
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(10)

Remark 3. The theory of the unweighted spaces B;. 'I and F;. 'I has been
developed in [13] and [14]. Extending this theory to the above weighted
classes of function spaces causes no difficulty. Furthermore, in [12: 5.1 ]
spaces of type B;,.c/w(x)) and F;.q(w(x)) were investigated in the frame
work of ultra-distributions for much larger classes of admissible weight
functions. Nevertheless also the later developments in the theory of the
unweighted spaces B;. 'I and F;,. 'I' see, e.g., [14], have their more or less
obvious counterparts for weighted spaces in the above sense.

Remark 4. Likewise to the unweighted case the above two weighted
scales B;. q( 11'( x)) and F;. q( w( x)) cover many other spaces such as weighted
(fractional) Sobolev spaces, weighted classical Besov spaces and weighted
H6lder-Zygmund spaces. We refer to [12: 5.1] and the literature men
tioned there.

2.2. Embeddings

In this section we want to collect some important results associated with
our topic which have been proved in recent papers, see [7] and the
references given there.

PROPOSITION 1. Let s E R 0 < q ~ CXJ and 0 < p ~ ex (with p < CXJ in the
F-case).

(i) H' (w(x)) and F' (IV(X)) are quasi-Banach .Ipaces (Banach. p,q p.q

spaces if p ~ I and q ~ I), and they are independent of the chosen dyadic
resolution of unity {rpj}'

(ii) The operator ff--->Hj' is an isomorphic mapping from B;.q(w(x))
onto B;.q andfrom F;,.,,(w(x)) onto F;,.q' Especially,

and

is an equivalent quasi-norm in B;.q(w(x))

is an equivalent quasi-norm in F;. q( IV( x)).

(I)

(2)

Remark 1. A new short proof of this proposition may be found in
[7: 5.1]. Nevertheless there are some other, more complicated proofs and
forerunners, e.g., in [12: 5.1] or [6].

Using the above proposition we could immediately extend the embed
ding theory developed in [13: 2.3.2 and 2.7.1] to the weighted spaces under
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consideration here if only one weight function is involved. On the other
hand we have also regarded in [7] embeddings with different weights.
Related to the F-spaces this result reads as follows.

PROPOSITION 2. Let w\(x) and wz(x) be admissible weight functions and

(i) Then F" (it'I(X)) is continuousl}' embedded in F'2 (wo(x)),
PI,'lI· • P"2,Ch· -

F" (it' (x)) C p2 (H" ,( x ) ),
PI,tll· I P2.q~·-

(4)

if and only if

n 11
s\-~~Sz-~

PI pz

.j(Jr some c > 0 and all x E (R".

and (5)

(ii) The embedding (4) is compact if and only if

11 n
Sl-~>SO-~

p\ - pz
and (6)

Remark 2. A proof of this theorem is given in [7: 5.2]. Obviously one
can extend the above proposition to the B-scale. Then pz may be infinite
and the interesting weighted HcHder-Zygmund spaces (if'(H"(x)) =
E'er, z ( 11'( x)) are included.

In the following we will specify our situation in some sense. Let WI and
W z be two admissible weight functions in the sense of Definition 2.1/1. Then
1I'1/'l\'z is an admissible weight function, too, and Proposition 1 tells us

(7)

(equivalent quasi-norms), i.e, If--> wzf is an isomorphic mapping from
F~,q(Wl(X)) onto F~,q«H'I/II'z)(X)) where H",(x) is assumed to be an
admissible weight function. The same holds in the B-case, Studying
continuous or compact embeddings it is sufficient to investigate it, without
loss of generality, for H"z(x) = 1. In the sequel we put H"l(X) = w(x) and
specify w(x) = (x>' for some ex> O.
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To finish this subsection we formulate a weak type continuous embed
ding assertion. Let L p. 'c/. = Lp.c/. (IRn) with 0 <p < CfJ be the usual Lorentz
space (Marcinkiewicz space) on IRn with respect to the Lebesgue measure,
see [15: 1.18.6] or [1: p. 216] for definitions.

DEFINITION 3. Let S E IR, 0 < P <Xi and 0 < q ~ CfJ. Let {qJ j} be a
dyadic resolution of unity. Then weak-B;. q is the collection of all fE S' such
that

(8)

(with the usual modification if q = oc) is finite. Similarly, weak-F;. 'i is the
collection of all fE S' such that

(9)

(with the usual modification if q = oc) is finite.

Remark 3. It would also be possible to replace L p • cr. by the more
general Lorentz spaces L". 'I' 0 < P ~ x' (p <x' in the F-case) and
O<u~oc.

PROPOSITION 3. (i) Under the restrictions for s, p and q in the above
definition both weak-B;,.'i and weak-F;,.<, are quasi-Banach Jpaces (Banach
Jpaces if p ~ I and q ~ I) and they are independent of the chosen dyadic
resolution of unity {qJj}'

(ii) Let s E IR, 0 < q ~ oc, 0 <p ~ oc (p < CfJ in the F-case),:x > 0 and
l/po = I/p + :x/no Then

B" (ex) c weak-B'
p. q Po· q

and F' (:x)cweak-F' .
p. 'i po· 'i

( 10)

Remark 4. A very short proof of the above proposition is included in
[7: 2.4].

2.3. Entropy and Approximation Numbers

Let B I and B 2 be two complex quasi-Banach spaces and let T be a linear
and continuous operator from B I into B 2 . If T is compact then for any
given G> 0 there are finitely many balls in B 2 of radius G which cover the
image TU, of the unit ball U I = {aEB,: Jla I BIll ~ I}.
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DEFINITION 1. Let kEN and assume T: B 1 -+ B1 to be the above
continuous operator.

(i) The k th entropy number ek of T is the infimum of all numbers
[; > 0 such that there exist 2k

-I balls in B2 of radius [; which cover TV,.

(ii) The kth approximation number ak of T is the infimum of all
numbers liT - A II where A runs through the collection of all continuous
linear maps from B I to B1 with rank A < k.

Remark I. For details and properties of entropy and approximation
numbers we refer to [2], [3], [9] and [11] (always restricted to the case
of Banach spaces). There is no difficulty to extend these properties to
quasi-Banach spaces.

Similarly to the previous subsection we will collect some recent, already
known results which will later on turn out to be the basis for the main
result of this paper. We will remind the reader of the papers [4] and [5]
concerning entropy and approximation numbers in (unweighted) function
spaces on domains.

Before quoting that result we briefly recall the definition of function
spaces on domains which are the subject of the succeeding proposition.

DEFINITION 2. Let Q be a bounded domain in [R" with CY boundary
8Q. Assume - Cfj < s < ifJ, 0 <p ~ Cfj (p < oc in the F-case) and 0 < q ~ 'lJ.

Then H' (Q) and F' (Q) are the restrictions of H' ([R") and F' ([R"),p.q p.q p.q p.q

respectively, to Q.

We denote by a+=max(O,a) for aEIR. Furthermore we always use
ak - k -e in the sense that there exist two positive numbers Cl and C 2 such
that

forall kEN. (I)

PROPOSITION. Let Q be a bounded domain in [R" with C X boundary 8Q.
Assume

(2)

and suppose that

(3)
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Let ek be the k th entropy number of the natural embedding id: B;,l,. '!,(Q)-->
B'2 (Q) and ak its kth approximation number.

Pl' q2

(i) Then it holds

e
k

,......... k -(S\-- '\'21,iu .

(ii) Suppose that in addition to the general hypotheses

(4)

is sati!>fied. Then it holds

(iii) Suppose that in addition to the general hypotheses

Then it holds

(iv) Suppose that in addition to the general hypotheses

Then there are positive constants CJ and C2 such that for all kEN

(6)

(7)

(8)

(8)

(10)

where A has the same meaning as in (7).

Remark 2. The proposition and its proof will be found in [4] and [5].
Obviously, via the elementary embedding

H' cFs cH'
p.u P.'! p.l· ifand only if u ~ min(p, q) and V? max(p, q) (11)

the above proposition holds also in the F-case, now with PI < 00 and
P2 < 00. (There is a new short proof for the "only if"-part of (11) in
[7: 4.3].)

Remark 3. The thin lines in the above diagrams Figs. 1-3 shall indicate
the different level lines on which the exponents of kEN are constant. Fig. I
refers to ek whereas Figs. 2 and 3 are related to ak' In Fig. 2 we made use
of the convention P'I = 00 if PI ~ 1. Then we have for l/p', ~ I/P2 ~ 1/2 there
that A= 1/2 is equivalent to S2 = SI - n/p,.
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6+=0

FIGURE 1

0< PI < 2

FIGURE 2

2 ~ PI <00

FIGURE 3

...L
p,

>.= canst.

\ - 1/\-2

>.>12
...L
p,
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3. ApPROXIMATION NUMBERS IN WEIGHTED FUNCTION SPACES

3.1. Dependence of the Approximation Numbers on Domains

In this subsection we provide ourselves with a last preparation which
may also be regarded as belonging to the proof of the main theorem. But
just this proof will already become long enough therefore we prove the
following lemma separately and in advance.

LEMMA. Let K R = {x E [R11 : Ixl < R}, R ~ I, be a ball in IR" centered at
the origin. Assume

-ClJ <S2 <Sl < 00, and
11 n

Sl -->S2--'
PI P2

(1)

Let a: be the k th approximation number of the compact embedding
id:F" (KR)-.F'" (KR) with ak=ak

l
, kEN. Then there exist positive

PI,(Il· p."q..,

constants C 1 and c2' such that for kEN and R> I we have

(2)

Remark 1. The above lemma will be proved in 4.1. We introduced the
function spaces on domains in Definition 2.3/2. We always put al = a[n if
Ie ~ I and [Ie] is the largest integer with [J. ] ~ X

COROLLARY. Let A", = {XE [R11 : 2"'-1 < Ixl < 2"'+ I}, mEN, be the usual
annuli and a~j) the re5pective k th approximation number of the embedding
idu1 : F'I (A

J
) -+ F'" (A

J
) where again (I) is assumed to be sati5fied. Then

Pl·ql P2,Q2
there exist positive constants c I and ('2 such that for all kEN and j EN we
get

(3)

Remark 2. The proof is essentially the same as for the above lemma
and will not be repeated here. We have to replace R> I by 2/, j EN, then.

3.2. The Main Theorem

As we already announced in the beginning the main subject of this paper
is to study the approximation numbers of the compact embeddings

(1)

and

(2)
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where the spaces have been introduced in Definition 2.1/2. We also
mentioned that this covers the apparently more general cases where the
unweighted spaces on the right-hand side of ( I) and (2) are replaced by
B'2 (f3j and F'2 (f3), respectively, for some f3 < x. One can furthermore

p~" q., p" q,

imagine to mix' B: and F-spaces in (I) and (2 J but we give up this
possibility. Moreover, it turns out that the third indices never play any role
such that we can formulate the theorem for the B-case only and afterwards,
via the weighted counterpart of (2.3/11 J, also the F-case is covered.

Let for 1~ P~x the numbers pi be defined by lip + liP' = I, for
o<p < 1 we put p' = x. Assume that

and

I 1 oc
-=-+-,
Po PI n

(3 )

(4)

In the usual (lip, s )-diagram we introduce the following regions (see
Figs. 4-6):

\ - 1."'-2

0< PI < 2,

~::::::::;"(p~,SI)

6=01

.1.
Po

01 > n(l - .1.)
PI

FIGURE 4
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~-""'(pl0ISd

6=0:

VI

...L
po

I
FIGURE 5

o<PI ~P2 ~ 2 or 2 ~PI ~P2 < Cf), 0 < J < ~

II O<PI~P2~2 or 2~Pl~P2<CfJ, b>~

III O<Pl<2<P2<CfJ, O<J<~,

),:= SI :S2_ max G-;2' ;1 -D >~

(
1) 15 1 1 1

O<PJ <2<p'l ~P2' J>~>n 1-- , )'=-+---2>-2
PI n PI

V PO<P2~Pl' O<J<~

VI PO<P2~PI' J>oc

VII 0 < P I < 2 < P2 < 00, 0 < 15 < OC, A~ ~
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)A::::::::~ (plO ' sd
8=0:

..L
P2

2 :s PI < 00

FIGURE 6

VIII 0 <PI < 2 <P2 < CfJ, :x < 0 ~n max (1 -~,~)
PI P2

IX 0 <PI < 2 <P2 < CfJ, :x ~n max (1 -~,~)< O.
PI P2

117

THEOREM. Let ak be the k th approximation number of the embedding (1)
and let the assumptions (3) and (4) he satisfied. Then using the above
notations we have the following results:

in region IV, i.e. IVa and IVb' there exist a positive constant c
and for anJ,' e > 0 a positive constant C/O such that

(i)

(ii)

(iii)

(iv)

in region I

in region II

in region III, i.e. lIla andlII b ,

ck - 7.'n - min! lip, - 1'2. I i2 _. liP2)

a
k

- k -7.in;

(5)

(6)

(7)

(8)

(v) in region V

(vi) in region VI

a
k

__ k-(Sl -- .Q).:'N; (9)

( 10)

(vii) in region VII there exist two positive constants C I and C2 such that

c
I
k -6in- min! liP, - 1/2. 1/2 - liP2 1~ ak ~ C2 k -6ill; ( 11 )
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(viii) in region VIII there exist two positive constants c, and C2 such that

(12)

(ix) in region IX there exist a positive constant c and for all)' [; > 0

a positive constant c" such that

Remark 1. As we emphasized in front of the theorem the results also
hold in the F-case.

Remark 2, Depending on the different values for the parameters PI and
rx. we indicated in the diagrams Figs, 4-6 the level lines for the corre
sponding exponents, Concerning the above defined regions VII-IX we
omitted this, for looking at (vii )-( ix) in the above theorem the gaps
between upper and lower bound appeared too large for having a
reasonable intention what the right behaviour of the exponent could be.

Remark 3. Comparing the above theorem with its counterpart (related
to entropy numbers) as it is presented in [7: 4.2] we omitted the line "L"
where 6 = rx. in our investigations. Up to now we have not succeeded in
developing a separate theory there. Nevertheless we could receive upper or
lower bounds for a k via elementary continuous embeddings and the known
behaviour for i5 > 0: and i5 <0:. On the other hand we can hardly expect to
get a nearly sharp result following that way as Remark 4 below will tell us.

Remark 4. We want to hint at a result of Mynbaev and Otel'baev [ 10:
V, §3, Theorem 9] which in terms of our situation for id: F~ll' 2(0:) -+ F~~,. 2

and with

gives that

rx.>0,
. n n

iJ = s I - - + - > 0,
PI P2

(14)

0<6<rx.

c5 > rx..

( 15)

The compatibility of our results and those in the cases 0 < i5 < 0: and 0 > 0:

is the best possible one, namely coincidence. Therefore we should also look
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for estimates similar to the above ones in the case <5 = IX. Although the used
methods to prove (15) in [10] are completely different from ours we take
( 15) for granted and try to find a generalization in our sense, i.e.
-X<S2<S,<CC, O<PI::;;'P2::;;,2 or O<P2::;;'P,<CC, O<ql::;;"X and
O<q2~X. Remembering the situation for the ek's in [7:4.2] a
dependence on the third indices may well happen. In (15) we have
q, = q2 = 2 and thus a possible influence could have disappeared.

4. PROOFS

4.1. Proof of Lemma 3.1

In the sequel we will denote by fi = min( 1, p) for any p, 0 <p <x.

Proof Step 1. As a preparation we first investigate a special open set
Q c IW, defined as

'V

Q= UKI)),
j=1

( 1)

where N EN is arbitrary and {Klj)};~ I are shifted open unit balls. As
usual, A means the closure of an open set A. The idea behind is first to
handle this simpler case above, i.e. to estimate the respective approxima
tion numbers a~!l) by a k and afterwards to cover K R by finitely many such
Q's from ( 1).

Let U E F II (Q), then, in a slight abuse of notations,
1'1' CJl

with UE F'I (KI)))
} 1'1' (11

(2 )

and, by definition,

N

Ilu Ipi (mliP; = ~ Ilu Ipi (KI)))li /-;;
PI,ql L. I PI.ql

j~l

(31

to adapt it to the localization principle for F;, q-spaces, see [14: 2.4.7], used
in the second step.

Let c > 0 and choose T E L( F'I (KI))) -+ £', (KI)))) such that
J PI- {jJ P2- lJ2

and

j= l, ... ,N, (4 )
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where we additionally used a1KiJ11 =ak> kE N, for those (shifted) open unit
balls Keil.

Let T = L.;v~ I Tj be such that

(6)

Then it holds

N

Ilu - Tu I F" (mil P; = " Ilu - Tu IF" (KI/I)II P;p" q, ., L.. I .1.1 P"l,' q'2 r
- - j ~ I

(7)

where we used (3), (5), PI ~P2 and the special construction of Q. By (4)
and (7) we have for arbitrary small (; > 0

and consequently

rank T~ Nr (8)

(9)

Step 2. We consider now the above ball K R , R ~ I, and look for a
suitable covering in the sense of Step 1. Let (I/n) /E" be the lattice such that

I I
OE- /E"<=>3kE/E": (}=-k

n n
( 10)

holds for every lattice point 0, which means in terms of its coordinates

j= I, ... , n. ( II )

Furthermore we have the following sub-lattices /E%

I {3/1- I}
/E~ = () + 3/E", 0 E ~ r, OJ E 0, ... , -n- , j = I, ... , /1. (12)

In other words, any sub-lattice /E~ is a shifted 3/E"-lattice which is uniquely
specified by its "basis point" 0 in the cube [0, (3n -I )/n]". Thus

{ I 3/1 - I}
~ OE~/E":O~Oj~-n- =(3n)"=:L ( 13)
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and obviously

L 1
U :l" =-:l"0, ,

r ~ 1 11

where we introduced the notation

{
I 311- 1 }Q= .0 E - :l" : 0,,;; OJ'';;--, j = 1, ... , 11 .
11 11

Let B~ be the following system of translated unit balls

121

(14)

(15 )

( 16)

for OrE Q, r = 1, ..., L, and K( x I) stands for a ball of radius 1 centered at x /.
Consequently (14) and (16) lead to

L

U B;'=W.
r=}

( 17)

Consider a resolution of unity rp = {rp;} IE .E". r ~ l. .... L' assigned to the balls
K(x / ) from (16) such that supp cp; c K(xl) E B~ and

Setting

L

I I rp;(x) = 1,
t" = 1 IE In

X E (R". (18 )

( 18) becomes

and

L

I er(X) = 1,
r=l

r= 1, ... , L,

XE [R"

( 19)

(20)

supp (2r c B~.

Let t/J r E C Cf (B~) be such that supp t/J r C B~ and

(21 )

XESUPPQr' (22)
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Let c > 0 and assume T: F" (K n B") -+ F'2 (K n B") an operator on
, PI,if] R 1 P2.'I2 R r

B;', extended by zero outside B:' nK R , rank Tr~k and

Wei - Tr)IB;'nKR Ii I~ ~ (I + C)/~ (a~B;nKRI)~. (23)

Caused by the symmetry of our construction we have for large R

r = I, ... , L. (24)

Let U E F" (KR)' Thus (20), (22), (24), po ? p I and the already mentioned
PI' lJl .-

localization principle for F-spaces yield

L

~Cl L 11t/J,(2ru-t/JJrQruIF~'"q,lKRnB:')II~
,. ==' I - -

L ~

<c '\' 110 u- T n.u IF" (K nB")ll fI ,-......;:; 2 ~ ... r rt:.:, [11. q... R r·
r = I - -

L

~ C, '\' li(id- T')IB"nKR II ~, IIQr u IF" (K R n B~)!I ~
- ~ r Pl.(jl

r = t

~ c4(1 + [;) ~ (a~B'; n KRI) 17; !Iu I F~'" ,) K R ) II ~.

Consequently we have for T:='L~~~1 Tr , rank T~Lk,

(/ R < ('aIBi'nKRI
Lk'" k '

(25)

(26)

Let N r be the number of balls K(x,) belonging to B~ which have a non
empty intersection with K R and put N: = max{N r , r = I, .. " L}, Again for
large R we get N ~ N" r = I, .." L, and after substituting kEN by Nk, (26)
becomes

(27)

where we used Step 1. Furthermore by usual volume arguments we have
LN - cRn and so finally

(28)

4.2, Proof of the Main Theorem

We divide the long proof into 7 steps, First we prove the estimates from
below. Mainly there exist two different methods: to use respective estimates
for approximation numbers in function spaces on domains or to shift the
problem to the l{l-situation where one already h,as such estimates, These
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first two steps will be the same for the B- and F-spaces. Afterwards we
show the sufficiency of proving the upper estimates for the F-spaces as we
can then reduce the situation of the B-spaces to that one. We have to
follow this rather complicated way as we want to make use of Lemma 3.1
which holds in the F-case only. Caring about the estimates from above the
main tool will turn out a tricky partition of IR n into annuli in connection
with the already investigated situation on domains, see Proposition 2.3 and
Corollary 3.1.

Proof Step 1. Let 0 < J < ex. and 0 <PI ~P2 ~ 2 or 2 ~PI ~P2 < ex or
P[)<P2~PI< ex" i.e., we handle regions I and V. By the well-known exten
sion-restriction procedure and Proposition 2.2/1 we have for arbitrary
smooth bounded domains Q c ~n

(1)

where we additionally used the multiplicativity of approximation numbers.
Now recall the already mentioned results for bounded domains, see
Proposition 2.3, thus (1) yields

ak ~ ck -() + ,.in, (2)

Likewise we handle the situation in the regions III and VII where (2.3/8)
and (2.3/10) provide

and consequently

(3 )

with

Hence we have proved the lower estimates in (i), (iii), (v) and (vii).

Step 2. We are now going to prove the lower estimates of (ii), (iv),
(vi), (viii) and (ix). Although this could be similarly done for B- and
F-spaces we will concentrate on the F-spaces. Regarding the lower
estimates in question one observes that no s-parameters are involved in the
exponents. It is only J=sl-s2-n(1/PI-l/P2»cx assumed to hold.

MORVI·IO
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Consequently one can immediately get the estimates in the B-case via the
elementary embeddings (2.3/11) and their obvious weighted counterparts

(4 )

for sEIR, <:>0, O<p<oo, O<qo~oo, O<ql~X, O«h~CfJ, cx>O. In
detail, the multiplicativity of approximation numbers then yields

(5)

where 0 < UI ~ 00, 0 < U 2 ~ oc and <: > 0 and thus always (SI + <:)
(S2 - <:) - n(l/PI - I/P2) > cx is satisfied.

We now want to make use of an argumentation similar to that one in
[4: 4.3.7] and [5: 4.3.1]. We consider the following commutative diagram

(6)

where Ni = 2i", idl is the identity map from I;: to I~; and idl-' as in (3.2/2).
Recall that I;;', mEN, 0 < P< 00, is the linear space of all complex m-tuples
y = (},;), furnished with the quasi-norm

(

m )1/1'
Ily 1/7,'11 = j~1 Iyill' .

We divide IR" into the usual annuli Aj={xEIR":2i-1<lxl<2i+l} for
JEN. Let 4">ECY (IR") with supp4">cB], the unit bal1, and, say,
JcfJ(x) dx = 1. Let A be the fol1owing operator

/\'1

{CX,};I\;~II-* L cx,cfJ(x,-x)
r=)

(7 )

where the x, are those k E 11" such that x, = k E AI" Neglecting constants we
thus can assume that there are Ni such points. Applying the localization
principle for F-spaces, see [14: 2.4.7], we may assume

(8)
r=l

for <x>"'~2i'" in Aj . In other words,

IIAII ~2i"'. (9)
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Consider now a map 'P E C'l~( /R"), supp 'P concentrated near the origin and
'P(x) = 1 for x E supp CP. Denote 'Pr(x) := 'P(xr - x), r = 1, ... , Nj • Then we
put

(10)

Estimating the norm of B we get

let: 'Pr)1 = IJ fix) 'P(xr-x) dX[

=/f fix) 'P(Xr-X)A(Xr-X1dx! (II)

where AECf(IR"), suppA concentrated near the origin and A(x)= I for
x E supp 'P. Using Ar(x) = A(xr - x) then (11) becomes

let: 'Pr)1 =IJ (fAr)(x) 'P(x r - x) dx 1= 1((/A r ) * 'P)(xr)1

~ sup I((/Ar) * 'P)(Y)I ~ II/Ar I B:. f II (12)
)' E Hn

for any (J E IR. This follows from the characterization of these spaces via
local means, see [14: 2.5.3]. The elementary embedding F" c B: f for

p" 'I' -, ' -

'\2 - nlp2 > (J yields - -

(13)

Applying again the above mentioned localization principle for F-spaces to
(13) we get

/\;',

I let: 'PrW'~c III I F;;~.q21Ip2
r~l

which provides

IIBII ~c.

By construction we have

(14)

(15)

(16)

Hence (9), ( 15) and the multiplicativity of approximation numbers lead to

(17)
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Concerning akUd,) we make use of [5: 3.2.2 and 3.2.4] which tells us

in region VI,

in region II,

in IV, VIII and IX

(18)

(19)

(20)

for k = 2jll
I. Then (17 H20) finally result in the estimates from below in

(ii), (iv), (vi), (viii) and (ix).

Step 3. We now turn to the estimates from above. First we will show
that it is sufficient to deal with the F-case only. Remembering our remark
at the beginning of Step 2 this is obvious concerning the regions II, IV, VI,
VIII and IX, whereas the upper estimate in VII is a direct consequence of I:

where we choose p, such that 0 < P I ~ p, ~ 2 and .1'.1 E IR such that

11 11
S,--=s")-~,

. p, - p~

(22)

It remains deriving the cases (i), (iii) and (v) in the B-case from those in
the F-case.

We remember again a construction from [4: p. 146/147] where

f E B-' (W) was divided into /'= ",.\~ ((/) f') v + '" J ... , ((/) I') v = f ,+}'N
p," ' L..J-O 'l'j. L..j _.\ + I '1'" ..\

with N E Nand {qJJif~ () a smooth dyadic partition of unity. Subsequently
the above function Iv was splitted up intofN=f'V.1 +/'V.2' We do not want
to repeat all the details. We are interested only in the final result that came
out: via the above way a linear operator fHf- I,,·. I could be constructed
approximating the embedding in question in region 1. The most important
point for us is its linearity which allows us to use interpolation arguments
even in that case of approximation numbers. Assume the estimates from
above in region I to be true in the F-case. i.e. we have

(23)

where O<sl-s2-1I(I/Pl-l/p~)<(X, O<ql~W, 0<q2~UJ. We choose
now 0'1 < 51 < 0'2 such that it holds

(24)

and

(25)
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for some (I, 0 < (I < 1. Then (23) applies also to the embeddings F'" (CI:)-t
Pj'-w"J

F'~ and F'" (IX) -t F" for arbitrary 0 < u\ ~ iX, 0 < u, ~x. Holding
1'2' C{2 1'1- u2 ,P2·lJ2 . - •

now the target space F" fixed we have for any linear operator T, which
1'2' lJ'2

maps

that via real interpolation we get

l.e.

and

T:B" (IX)-tF'2
PI' til P2' (/2

II T I B" (IX) -t F" II
PI' til P2' (j2

~ c II T I F'" (x) -t F" III - 0 II T I F"2 (IX) -+ F" '1 0.
PI- II} 1'2' lJ2 PI_ u2 1'2- CJ2 1

(26)

(27)

(28)

Here it was essential to have the same target space which then, in fact, is
not interpolated. For details concerning the real interpolation of B- and
F-spaces see [13: 2.4.2] for the unweighted case. The needed extension to
weighted spaces then follows from Proposition 2.2/1 (ii). Specializing now T
byf~f-fv., we have from (23), (24), (25) and (28)

(29)

Afterwards we repeat the same, now fixing the original space B" (x). In
PI- lJl

other words, (26) and (27) are then replaced by

(30)

and

(31 )

where we choose 0"1 < .1'2 < 0"2 such that

(32)

and

(33)
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are satisfied. Consequently we finally get from J = (I - 0) J 1+ OJ 2 that

(34)

in region I where always the respective F-result is assumed to hold. In
particular we have

(XI -s:!),i,.,, (35)

and 0 < ql ~ 00, 0 < q2 ~ 00 and that is just the key to cope with the
regions III and V. The construction is simple but effective. We always have
now 0 < 6 = .1'1 - n/PI -.1'2 + n/p2 < rx and thus can choose (11 E IR and (12 E IR
such that for some rx l > 0, rx 2 > 0, (XI + (X2 < (X it holds

n n
0<(1I---(12+-<rx- rx l-rx2 ,

PI P2
(36)

Next we split our embedding id: H" (rx) -+ H'2 into five:
PI' tJI P2' '1::.

(37)

(38)

(39)

(40)

(41 )

where 0 < T I ~PI ~ U I < cr, 0 < U2~P2 ~ T2 < 00 and (11 and (12 as in (36).
We apply (35) to id l and ids, note the continuity of (38) and (40) and
hence the multiplicativity of approximation numbers provides

(42)

Assuming now the respective estimates in the F-case to be true, (42)
becomes in region III

G
k
~ ck -(." - O"11/n - (0"2 - s21/n - (0"1 - 0"21/11 - maxi 1/2 - 1/1'2' 1/1'1 - 1/2) = ck --) (43)

and in region V

(44)
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Regarding (43) we have only to ensure in region III that (u l -u2 )/n>
1/2 + max( 1/2 - Ilp2' lip, - 1/2) can always be suitably chosen. In other
words, by (36) it is necessary to have

which is equivalent to

0<X 1 +x2<x-l1max (~, I-~).
P2 P,

(45)

(46)

In region III we have A> 1/2 and <5 < x and thus conclude x> 11 max( Ilp2'
1-l/pd such that x, and X2 in (46) may be suitably chosen. Consequently
the theorem is proved assuming the upper estimates in the F-case to hold.
It remains to verify this supposition.

Step 4. Dealing with the estimates from above in the F-case we rely on
a partition of IH n into annuli up to a certain radius and a simultaneous
control of the behaviour outside. For this purpose we make use of
Corollary 3.1 several times. Nowak always means adidF). Let lEN
and a~1 be again the kth approximation number of the embedding
id l/l

: F'l (A) -+ F" (A), where A = {x E \Rn : 2 /- 1 < Ix[ < 2 /+ I} for 1=
Pl' 'I, I Ph 'I' I I

1,2, .,. and A o = {X~E IRn
: [xl <2} are defined as usual. We start con-

sidering region I. Then Corollary 3.1 and Proposition 2.3 give

(47)

In the sequel we always investigate suitable unions Uf~o AI in Wand
LEN is chosen sufficiently large. We consider operators BI:f~!tAt'

1=0, I, ... , L, (in the sense of a suitable assigned resolution of unity) and
get from the localization principle

We set

and have

liB f I P' II ~ c2 -h II riP' (x)ll.
I PI' 'I, . p'.'" (48)

(49)

(50)
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Taking the additivity of approximation numbers into consideration
(47)-(49) yield for k=If~okl

Lx;;; + ±2 /"i7;k 1- 1,>/11);;; 2 -I,,;;;)
I~O

b;;;+ ±2 IIX-,'IP;kl-l,j/llli7;)
I~O

(51 )

where we used again the localization principle for F-spaces and denoted
p;=min(l,P2)' Let £>0 and put k l =M2- 1

< for some M>2U:. (More
precisely, we should choose constants C/, 1=0, 1, ..., L, near I such that
k l = cI M2 -1< EN, but we neglect this in the following as it causes no
trouble.) Then (51) becomes

(52)

if L is chosen sufficiently large and £ < n( ex - 6)/6. This procedure
essentially uses 0 < 6 < ex. Thus (52) is the estimate in question

The result for region VII now follows similarly as it did in the B-case, ~ee

(21). At this point we want to introduce a simplification. Regarding (51)
and (52) the number P; has finally no influence at the result. Therefore we
will always assume P; = 1 in the sequel though this is not quite true for
P2 < 1. But after all also this exponent cancels itself appearing on both
sides.

Step 5. We care about region III now. Recall the already known
homogeneity estimates, see [7: 5.4/4, 5] or [16: 2.2]

and
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Applying these results to the annuli Ai we get for .1'1 > n( l/p I - 1) + and
.1'2 < 0

(55)

where we additionally used Proposition 2.3. Furthermore, we have <x y "
2)' in A) and hence

(56)

(57)

The counterpart of (51) reads then as

Uk ~ C(2-.L+ito 2)1,) - .Ik, l)

where we assumed P; = 1. Then k) = M2 - ", f; > 0, and a suitable choice of
E < (x -<5 )/i: results in

(58)

Assuming L ~ ;./x log M we finally arrive at

(59)

which is the desired result in region III under the additional assumptions
.1'1> n( l/PI - 1) + and .1'2 < O. We will remove these restrictions by shifting
the problem to an already known situation. The lift operator f" on S',

aE!R, (60)

maps F~. q isomorphically onto F~.-q" (for details, see [13: 2.3.8]). This
assertion extends to the spaces F~. q( x), see [12: Chapter 5] and the
references given there.

Suppose first I ~PI < 2, i.e. n( I/PI - I) + = O. We choose So such that
S2 < So <.I'I and .1"1 := .1'1 -so> n(l/PI - I) + and s~ := .1'2 -So < O. Then (59)
together with A' = ), gives

and hence (60) guarantees

The remaining case 0 <PI < L i.e. n( I/PI - I) > 0, is treated similarly.
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Step 6. We handle the cases (iv) and (ix) of the main theorem now
where Ie = (s] - s2)/n -max(l/2 - 1/P2, lip, - 1/2) = J/n +min(l/2 - I/P2,
Iii}] -1;2) > 1/2,0 <PI < 2 <P2 < CIC, 15 >x > 0 and S2 < s, are assumed to
hold. We start dealing with case (iv). We apply the above proved result in
region 111 for some s, E !R,

(61 )

In particular, we split up our embedding in question

where the embedding F" -> F'~ is continuous. Then (59) applied to
p .... '1-' fl'h q,

F" (oc) -> F" and s, chosen such that
PI' 'II I''!..'IJ. .

(63)

together with 15, < rx finally yields for arbitrary [; > 0

(64)

i.e. the desired result in region IV. Here the assumption 15 > x >
n max( I - l/p" I/P2) becomes important for it guarantees the possibility to
find s, E IR as described in (61) and (63), that is 15, < oc and A] > 1/2.

Concerning region (ix) we follow the argumentation of the previous step
and arrive at (57) now with 6>rx. Choosing k j =M2 j

" [;>0, yields (recall
P; = 1)

(65)

which is for [; > (15 - x)/), > 0

(66)

Assuming L ~ )./x log M and afterwards the substitution k = eM' + pix),

leads to

(67)

We remember [; > (15 - rx)/A and hence

(68)



WEIGHTED FUNCTION SPACES 133

for any [;' > O. Looking again for the best possible ). and 6 as above (in par
ticular, we introduce again an additional parameter .1'3 such that for 6 1 from
(61) it holds bl>nmax(l-I/PI' I/P2)~OC and for AI from (63) 1'1>1/2)
we would have 6 = n maxi I - 1/p l' 1/P2) for I. = 1/2. Consequently (68)
becomes then

(69)

for arbitrary [; > 0, i.e. the desired upper estimate in region IX.

Step 7. We concentrate on the regions II, V, VI and VIII now, The
counterpart of (47) reads for PI = P2 now

(70)

For b >:J. we determine k{, 1=0, ..., L, by

where [; > 0 satisfies [; < .1'1 - .I'2- oc. Hence

L LI k
l

== 2Ln /(S\ - S2)(S\ -.'>2 - (.\'1 - .\'2-:X - ~;l) I 2'(,\'1 -S:,! -LX - ~111.'i(Sl -- ·\'2)

{=o {=o

L
=2 Ln I 2({-LIIS1-S2-~-I:I"i('\I-'\21~c2L"

{~ 0

and

L LI 2/i.l"' -,"Z -~)k,--'.I"I -,"Zi/" = I 2/i.l"I-'I'Z-~-'" +.fZ+~+d2 -L("+<:i

I~O I~O

L

=2-"L I 2"1/- L)~c2 -"L
!~O

and the counterpart of (51 ) (with P; = I) obviously results in

(71 )

(72)

(73)

(74)

Now (74) leads almost directly to the upper estimates in (ii) and (viii). We
choose So as shown in Fig. 7 such that

and
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FIGCRE 7

Then we have po c p2 and (74) applied to P' ((X) --+ P" yield
PI- qo 1'2- (/2 PI' lfl PI- C/o

together the upper estimates in region II and VIII.
We now deal with the regions V and VI. From (70) we have

Concerning the remaining embedding F'l (A,) --+ F'2 (A,) for p, <PI we
PI- If"!. P2' If:!. -

want to make use of Holder's inequality. We proceed as in [5: 4.1.1 ] which
is based on local means. Let t/J 0 E C (~( IR II

) be such that Jt/J o( x) dx of- 0, let
t/J = ANrj;o for N EN and introduce the local means

t/J( t. f)(x) =Jt/J( y) f(x + ty) dy, xEIR", t>O (75)

and define t/Jo(t, f)(x) similarly. Then we have for 2N> max(s2,
II( I/PI ~ 1)+) that for IE F;,',. 'il( IR")

is an equivalent quasi-norm in p2 (\R II
), for details see [14: 2.4.6]. By the

p,.q"
usual extension-restriction procedure and Holder's inequality for P2 <PI we
consequently get

(77)

Then (70) and (77) give

(78)
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both for the regions V and VI, s, > S2 and I/pl < IiP2 < I/Pl + a/n. Let first
J < a and put k, = M2 -il. 1=0, ... , L, for some G > 0 and a constant
M> 2Le. The counterpart of (51) (with P; = I ) becomes

(I s:. (2 xL+M L'J S21i Jl ~ 7"') ~+rISI
q;\/"" ( ~ L .....

'~Il

"2)iJlI)

(79)

if /;>0 is chosen sufficiently small. l:<n(ex-J)/(S,-,1·2). and L~

(SI -,1 2 )/(nex) log M. Thus (79) gives the results in region V,

It now remains to prove the upper estimate in (vi). Let

. (I I)(£>-ex) ---
P2 PI

Then obviously % > 0 for £> > ex and I/Pl < 1,.'/)2 < Ii/), + ex,in. ,I, > S2'

Furthermore () - ex + x(s, -s21/n > O. for

(80)

Let k, = M 2 'x, 1=0. .... L. then the counterpart of (51 ) reads as

- (' (7- ~ .....

xL+M '(SI "",iI/ ±2',,),x+Z(SI """'1/1)
,~()

L
:xL + M - l,r) - S~),iI12LI<'j - :X + :l«Sj - S2 1,/II) I 21/- L)«}

,~()

(81 )

where we used the above mentioned properties of X. Substituting the above
special Y. we get for L ~ I/rx(ex,ill- liP2 + I/Pl) log M

(le];\4 ~ ('2 M - ?:,::II+ I il':; -- '''';1'1

what we just looked for in the region VI. This completes the proof.
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